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Brachiation of a polymer chain in the presence of a dynamic network
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The viscoelastic behavior of a physically crosslinked gel involves a spectrum of molecular relaxation
processes, which at the single-chain level involve the chain undergoing transient hand-to-hand motion through
the network. We develop a self-consistent theory for describing transiently associating polymer solutions that
captures these complex dynamics. A single polymer chain transiently binds to a viscoelastic background that
represents the polymer network formed by surrounding polymer chains. The viscoelastic background is described
in the equation of motion as a memory kernel, which is self-consistently determined based on the predicted
rheological behavior from the chain itself. The solution to the memory kernel is translated into rheological
predictions of the complex modulus over a wide range of frequencies to capture the time-dependent behavior of
a physical gel. Using the loss tangent predictions, a phase diagram is shown for the sol-gel transition of polymers
with dynamic association affinities. This theory provides a predictive, molecular-level framework for the design
of associating gels and supramolecular assemblies with targeted rheological properties.
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Polymers with dynamic associations are critical to
many modern engineering applications, including stimuli-
responsive materials [1], self-healable electronic devices [2],
lithium-ion batteries [3], and cell culture matrices for di-
rected stem-cell delivery and differentiation [4–7]. These
polymers exhibit complex flow behavior, characterized by
time-dependent stress responses to flow deformation. Such
complex behavior derives from the cascade of molecular
relaxation times associated with chain relaxations, entangle-
ments, and interchain associations and interactions. Theo-
retical models that can fully capture the essential physics
underlying these polymer networks have considerable value
in predicting the performance of new materials.

An archetypal example is reptation theory for the flow be-
havior of highly entangled polymeric fluids and melts [8–13].
A single polymer chain within an entangled melt slithers
(or reptates) back and forth within a tube defined by the
surrounding polymers. Reptation theory renders concrete pre-
dictions for various properties that are in general agreement
with experimental observations, though detailed comparisons
reveal subtle distinctions [14]. Refinements of reptation theory
generally acknowledge that the confinement tube is not a
static entity by introducing physical effects such as constraint
release or confinement-tube end fluctuations [15–18]. Com-
putational realizations of entangled polymer melts as slip-
link networks [10,14,19–21] result in rheological behavior
that involves relaxation of the entanglements throughout the
timescale of polymer relaxation.

Interchain associations that occur in dynamically
crosslinked gels introduce additional relaxation processes
that are not captured by the reptation mechanism. The
sticky Rouse and sticky reptation models [22–25] provide
valuable frameworks for interpreting the rheological behavior
of associating polymer networks [26–28]. These models

describe a flexible chain (i.e., a Rouse polymer) whose
associating groups experience an effective friction that scales
with the bond lifetime. Thus, the underlying dynamics of
the network are represented in the model as an effective
Newtonian friction (i.e., no frequency dependence) that does
not reflect the underlying frequency-dependent response of
the viscoelastic network.

In dynamically associating networks, one imagines a single
chain moving through a polymer network via a mechanism
of transient reaching, grabbing, and releasing of the polymer
network (see Fig. 1). This mechanism is more akin to the
hand-to-hand translocation of a primate through the branches
of a tree, which is dubbed brachiation. The network is not
a static entity, and a polymer segment that is attached would
experience a response that reflects the viscoelastic memory of
the network.

We develop a theoretical framework to analyze the brachi-
ating motion of a polymer chain in the presence of a dynamic
network. This model captures transient associations, resulting
from chemical units along the chains forming dynamic bonds
that dominate the relaxation processes of the surrounding vis-
coelastic network. We introduce a self-consistent relationship
between the single-chain dynamics and the memory kernel of
the network, resulting in a predictive model for the rheolog-
ical behavior whose parameters are based on experimentally
measurable physical properties.

We consider a single flexible polymer chain of length N
(i.e., number of Kuhn segments) containing M chemical units
that exhibit transient associations with neighboring polymers.
The conformation is defined by the space curve �r(n, t ), where
n is an arc-length parameter that runs from zero at one chain
end to N at the opposite end. The binding sites are equally
spaced along the chain, such that the ith binding site is located
at position ni = N (i − 1)/(M − 1). We neglect long-range
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FIG. 1. Schematic representation of the brachiating motion of a
polymer chain undergoing transient binding and unbinding with a
dynamic network.

hydrodynamic interactions between segments of the polymer.
These effects are frequently captured using a preaveraging
approximation (e.g., the Zimm model) [13]. Such an approach
for semidilute conditions requires further development to de-
fine a crossover from Zimm-like to Rouse-like behavior with
increasing length scale [24,25]. We relegate such a treatment
to future work.

The dynamic motion of the chain is governed by the
Langevin equation

ξ
∂�r(n, t )

∂t
+

M∑
i=1

δ(n − ni )
∫ t

0
dt ′K (|t − t ′|)σi(t, t ′)

∂�r(n, t ′)
∂t

= 3kBT

b2

∂2�r(n, t )

∂n2
+ �f (B)(n, t ), (1)

where σi(t, t ′) is a fluctuating association that indicates
whether the ith segment is bound at the current time t and
remains bound for all past times until t ′ [i.e., σi(t, t ′) = 1
if bound for all times between t ′ and t , and σi(t, t ′) = 0,
otherwise]. Thus, the ith associating segment experiences a
viscoelastic memory kernel K between t ′ and t only if the
segment remains bound throughout that time period. The
Brownian force �f (B) obeys the fluctuation dissipation theorem

〈 �f (B)(n, t ) �f (B)(n′, t ′)〉
= 2kBT ξδ(n − n′)I

+ kBT K (|t − t ′|)
M∑

i=1

σi(t, t ′)δ(n − ni )δ(n′ − ni )I. (2)

The kernel K represents the viscoelastic memory of the sur-
rounding polymeric network that only influences site i during
contiguous time periods of association. Thus, we assume that
the site loses memory of past deformations immediately upon
detachment. The exact mathematical form of K is defined
through a self-consistent calculation that links the network
rheology back to the single-chain dynamics. This is formally
defined below.

The Langevin equation [Eq. (1)] acts as the starting point
for evaluating the rheological behavior of the polymeric fluid
[13]. We define the pth normal mode φp(n), where φp =√

2 cos(pπn/N ) for p �= 0 and φ0 = 1. The chain confor-
mation is expressed as a normal-mode expansion �r(n, t ) =∑∞

p=0 φp(n) �Xp(t ). The complex modulus G̃(ω) of the poly-
meric fluid is determined from the molecular stress relaxation,
which is related to the normal-mode correlation function

Cpp′ (t ) = 〈 �Xp(t ) · �Xp′ (0)〉. (3)

We perform a normal-mode expansion of Eq. (1), multiply
by �Xp′ , and take the ensemble average (denoted by the angle
brackets 〈· · · 〉).

In this work, we explore the linear viscoelastic behavior
of our model, based on the assumption that both the chain
configurations and the binding and unbinding kinetics are
governed by their equilibrium behaviors. Significant flow
deformation would perturb the chain conformations, resulting
in local forces that are likely to modify the instantaneous
unbinding rates [29–31]. We relegate a treatment of the
nonlinear viscoelastic behavior of our model to future work.
We assume the binding/unbinding kinetics obeys Poisson
statistics and that the rates are independent of the instanta-
neous forces experienced at the binding sites, resulting in the
expression 〈σ (t, t ′)〉 = pb exp (−ku|t − t ′|). The equilibrium
binding probability pb is given by pb = kbcM/(ku + kbcM ) =
KeqcM/(1 + KeqcM ), where kb and ku are binding and unbind-
ing rate constants, respectively, and c is the polymer-chain
concentration (per unit volume). We define the equilibrium
constant for binding Keq = kb/ku.

We nondimensionalize all timescales by the Rouse time
τR = N2b2ξ/(3π2kBT ), which represents the relaxation time
of a single polymer in the absence of associations. The
Laplace-transformed correlation function Ĉpp′ (s) (i.e., from
t/τR to s) is governed by

∞∑
p′′=1

{sδpp′′ + pbM
pp′′sK̂(s + Ku) + p2δpp′′ }Ĉp′′ p′ (s)

= 1

p′2 δpp′ + 1

p′2 pbM
pp′K̂(s + Ku). (4)

The transition to dimensionless variables results in a
memory kernel K̂ = K̂/(Nξ ), correlation function Ĉpp′ =
Ĉpp′Nξ/(3kBT τ 2

R ), and unbinding rate constant Ku = τRku.
The normal-mode coupling matrix 
pp′ is


pp′ = 1

M

M∑
i=1

φp(ni )φp′ (ni ), (5)

resulting in mode coupling for a finite number of associating
sites M.
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The single-chain dynamics results in a prediction of the
complex modulus G̃(ω) (Fourier transformed from time t to
frequency ω) through the expression

NG̃(ω)

ckBT
= iτRω

∞∑
p=1

p2Ĉpp(iτRω). (6)

This expression relates the Laplace-transformed correlation
function Ĉpp′ (s) to the Fourier-transformed complex modulus
G̃(ω). The final step in our theory is to relate the rheological
properties, defined by the complex modulus G̃, back to the
memory kernel K̂ . When a site is associated with the net-
work, we assume the site experiences a viscoelastic response
that is consistent with the frequency-dependent behavior of
the network. Since the network behavior is determined by
the single-chain relaxation [via Eq. (6)], we define a self-
consistent expression for the memory kernel, which is given
by

K̂(s) = τR6πa

Nξ

Ĝ(s)

s
= c̃

∞∑
p=1

p2Ĉpp(s), (7)

where a is a microscopic radius associated with the local
drag of a binding site within the surrounding network, and
c̃ = 2b2ac/π is a dimensionless polymer concentration.

Equation (7) allows the prediction of the complex modulus
G̃ from the local viscoelastic memory kernel K , based on
the assumption that local forces at the length scale of the
polymer chain segments can be self-consistently related to
the macroscopic viscoelastic response of the network. This
approximation does not account for instantaneous forces on
the chain but is analogous to a variety of approaches for
describing equilibrium behavior, such as in the case of ther-
modynamic phase behavior of polymer solutions. Models
for such phase behavior are frequently cast in a mean field
where an individual polymer does not interact directly with
other polymers but rather with a mean-field approximation of
polymer chains. The Zimm model, one of the most effective
models for describing the rheological behavior in polymers
including hydrodynamic interactions, does not have polymer
segments interacting directly with other segments of the chain.
Instead, the polymers merely interact with an average of
the hydrodynamic interactions based on a preequilibrated
assumption [13]. In that sense, this treatment of the hydro-
dynamic interactions is akin to our treatment of the physical
response of the network. Moreover, the essential feature of our
model is that the communication of stress is not instantaneous
in time but has temporal memory, which is a hallmark feature
of viscoelastic fluids.

The numerical procedure for rendering predictions for G̃
involves the following steps. First, we evaluate Ĉpp′ (iτRω +
nKu) for large n, which is approximately given by the value

Ĉpp′ (iτRω + nKu) ≈ 1

nKu + p2
δpp′ − iτRω

(nKu + p2)2
δpp′ . (8)

The value of n at the starting point (nmax) is selected
to ensure that the first step is numerically accurate over
the entire frequency range. This is achieved by evaluating
Ĉpp′[iτRωmax + (nmax − 1)Ku] using Eq. (4), where ωmax is
the maximum frequency in the range of the prediction. This

is used as the starting point for evaluating Ĉpp′ (iτRω + nKu),
since the largest frequency is the case where the asymptotic
form in Eq. (8) is least accurate. We then compare the eval-
uated Ĉpp′ [iτRωmax + (nmax − 1)Ku] against the asymptotic
form in Eq. (8) to ensure accuracy (within 0.01%). Then,
we iteratively evaluate Ĉpp′ (iτRω + nKu) [using Eq. (4)] from
large n to n = 0. The resulting value of Ĉpp′ (iτRω) is used to
predict the complex modulus G. Python scripts that are used to
calculate G are available on the Spakowitz laboratory website.

Figure 2 provides predictions for the complex modulus
G = G′ + iG′′ (black curves), where G′ is the storage mod-
ulus (solid) and G′′ is the loss modulus (dashed), versus the
frequency τRω. These plots show a range of concentration c̃
and unbinding rate Ku for fixed equilibrium constant Keq = 1.
The gray curves provide predictions from the Rouse model as
a reference. The vertical dashed lines indicate the value of Ku

in each plot, and the crossover frequency ω� (black dot) shows
where G′ = G′′.

The complex modulus from our theory exhibits hallmark
features of gelation. For large unbinding rate Ku, the release
from the network is instantaneous, and the internal Rouse
modes dominate the viscoelastic behavior of the solution, as
can be seen from the complex modulus tending to the Rouse
model for large Ku and low concentration. As the unbind-
ing rate decreases, the chain experiences longer association
times to the viscoelastic network. These associations lead
to segmental motions experiencing the viscoelastic drag of
the network. At timescales (i.e., inverse of frequency) where
the network exhibits viscous behavior (G′′ > G′), chain seg-
mental motion has minimal elastic memory within the kernel
K . In the low-frequency limit, the effective viscous drag of
the network dominates the chain motion, resulting in a loss
modulus G′′ that is always larger than predictions from the
Rouse model. At timescales where the network exhibits elastic
behavior (G′ > G′′), chain motion is governed by both the
internal Rouse modes and the elastic response of the network.
In the high-frequency limit, the internal Rouse modes domi-
nate, resulting in a convergence with the Rouse model for all
conditions. The emergence of a plateau modulus indicates a
broad range of timescales where the polymer network behaves
effectively as an elastic solid, and the segmental motion is
determined by the elastic response of the network. Moreover,
the ability for these predictions to span such a broad frequency
range, capturing three regimes of viscoelastic behavior, has
not been achieved by previous models and demonstrates an
advantage of our theory.

Though the crossover frequency ω� shown in Fig. 2 cor-
relates with the unbinding rate Ku, they do not exactly coin-
cide. Figure 3 shows the crossover frequency ω� versus the
unbinding rate Ku for a range of concentrations and a fixed
value of Keq = 1. The limiting behavior as Ku → 0 scales as
ω� ∼ Ku, shown in Fig. 3 as the dotted curves. However, the
theory deviates significantly from this trend with increasing
Ku, particularly as Ku � 1. In this limit, the unbinding rate
Ku is sufficiently fast that the gel is no longer stable, marking
the transition to the solution phase (i.e., the sol phase). In the
gel phase, the viscoelastic response of the network dominates
the relaxation behavior of a polymer chain, and the sol phase
arises when the internal Rouse modes dominate the behavior.
The polymer concentration modulates the crossover between
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FIG. 2. Theoretical predictions for the storage modulus G′ ( solid) and loss modulus G′′ ( dashed) versus the frequency τRω, where τR is the
Rouse time of the polymer. The black curves are based on our theory, and the gray curves show predictions from the Rouse model. Predictions
are shown over a range concentration c̃ and unbinding rate Ku for a fixed value of Keq = 1. The black dot identifies the crossover frequency ω�,
and the vertical dotted line indicates the unbinding rate Ku.

gel and sol phases (demonstrated in Fig. 3 by the points where
the solid line deviates from the dotted line for each concentra-
tion). Increasing concentration c̃ leads to increased crosslink
density and elasticity of the network, which decreases the
crossover frequency ω� since a more elastic network requires
a longer time to relax. Similarly, increased elasticity due to
higher concentration c̃ requires faster unbinding rate Ku of the
associations to cross over from the gel to the sol phase.

FIG. 3. Crossover frequency ω� versus unbinding rate constant
Ku over a range of concentrations from c̃ = 0.16 to c̃ = 100 for a
fixed value of Keq = 1. The dotted curves indicate a linear power
law ω� ∼ Ku, which is valid as Ku → 0. The value of the crossover
frequency ω� and the unbinding rate constant Ku where the dotted and
solid lines deviate as a function of polymer concentration c̃ indicate
the significant influence of concentration on the sol-gel transition.

A sol-gel phase diagram over a range of polymer concen-
tration c̃ and equilibrium constant Keq (fixed unbinding rate
Ku = 1) is provided in Fig. 4. In the inset plot of tan δ =
G′′/G′ versus frequency, we define the emergence of a min-
imum between the curves for c̃ = 0.10 and c̃ = 1.00 as the
transition between the sol and gel phase. The phase diagram
in the main plot is constructed by identifying this transition
over the range of Keq values.

Two regimes are present in the phase diagram. For low
Keq values, sufficient polymer concentration is needed for
adequate binding probability pb to engage the network and

FIG. 4. The inset plot shows tan δ = G′′/G′ versus frequency ω

over a range of concentrations c̃ and fixed Keq = 1 and Ku = 1. The
main plot shows the sol-gel phase diagram for concentration c̃ and
equilibrium constant Keq at a fixed unbinding constant Ku = 1. The
dots indicate the conditions coinciding with the inset plot of tan δ.
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sustain an elastic plateau that marks gelation. The scaling of
the gelation concentration in this regime is c̃gel ∼ K−1/2

eq . The
second regime occurs at large Keq values (i.e., Keq � 1). Here,
the binding probability pb ≈ 1 for any modest polymer con-
centration (c̃ ≈ 1). However, binding does not imply adequate
viscoelastic traction for a plateau modulus to emerge, and
the chain dynamics are dominated by internal Rouse modes
rather than network viscoelasticity. In this regime, the gelation
concentration tends to a constant.

Our rheological model establishes a predictive framework
based on molecular physics. Rheological data is frequently
modeled using phenomenological constitutive equations (e.g.,
the Maxwell model) [32], which may have molecular inspira-
tion but do not easily guide molecular design. In contrast, our
model has the ability to make rheological predictions that can
be leveraged for the rational design of new supramolecular
materials [33]. Importantly, all of the input parameters for
our model directly correlate to experimentally measurable
quantities (i.e., unbinding rate, equilibrium constant, concen-
tration). For example, transient associations may be formed
by reversible covalent bonds, for which the binding and
unbinding rates can be found via high-performance liquid
chromatography [34].

The need for a predictive tool in material design is espe-
cially relevant in the areas of drug delivery and tissue engi-
neering. Supramolecular materials have long been leveraged
for slow-release drug applications and continue to be utilized
for more advanced drug delivery functions, such as biopoly-
mers designed to display growth factor binding affinity in
order to stimulate blood vessel growth [35]. Polymer materials
with dynamic associations are also leveraged in synthesizing
mimics of the natural extracellular matrix, where material
stiffness, stress relaxation, and composition influence cell
behavior and stem cell fate [36,37]. Despite the large body of
materials available to experimentalists, the ideal cell culture
scaffold and drug delivery vehicle has yet to be found [5],
and most experimentalists heavily rely on trial and error to
achieve the desired material properties. Although there exist

decades of theoretical models to describe polymer networks,
these phenomenological models, while exhibiting reasonable
fits to experimental data, aim to describe aspects of the
bulk behavior while eschewing molecular detail, hindering a
molecular-level approach for material design.

Transient associations imply periodic engagement of the
chain with the dynamic network. Thus, the chain’s fluctuating
conformation is akin to the motion of a primate through a
jungle, where translation occurs through the transient passing
of the primate through the tree branches in a hand-to-hand
manner. The engagement of a hand to a branch does not
imply the branch is static, rather the branch would move in
concert with (or in physical response to) the motion of the
body.

Similarly, the transient association of a polymer segment
to the network results in the segment experiencing a local
temporal response that mimics the relaxation processes of
the surrounding dynamic network. Our approach introduces a
self-consistent realization of this frequency dependence rather
than resorting to an ad hoc definition or a fitting procedure.
This places an emphasis on the chain dynamics defining the
effective medium, and the resulting frequency dependence of
the polymeric fluid dramatically influences the chain motion,
which has been implicated in the modeling of biopolymers
such as DNA in living cells [38–40]. Furthermore, many
complex fluids and materials, including glasses and colloidal
gels, exhibit mechanical responses with temporal memory,
and our approach provides an avenue to predict their col-
lective dynamics. Finally, we envision this approach would
be valuable for a range of polymeric problems, particularly
in the semidilute regime where chain interactions cannot be
approximated as a static confinement.
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